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A PNEUMATIC TYRE ON A PLANE'f 

V. G. V I L ' K E  and  M. V. D V O R N I K O V  

Moscow 

(Received 30 May 1997) 

A model of a pneumatic tyre as a system with an infinite number of degrees of freedom is proposed, when its surface is represented 
by the deformed surface of a torus. Using a number of hypotheses a functional of the potential energy of the deformations of 
the tyre is obtained as a function of the deformations of its tread. A complete system of equations of motion is obtained, assuming 
that the wheel rolls without slipping in the area of contact of the tread with the plane, with respect to the previously unknown 
part of the tread. In two special eases of the rolling of a wheel with breakaway and on a banking, all the characteristics of the 
motion (the contact area, the tyre deformation, and the forces and moments applied to the disc of the wheel) are obtained. 
© 1998 Elsevier Science Ltd. All fights reserved. 

A number of models of a pneumatic tyre exist, which basically have a finite number of degrees of freedom 
and which are based on non-holonomic relations [1-3]. Dynamic effects, related to the deformation of 
the tyre over considerable parts of its free surface [4], can be described using a model of a tyre with an 
infinite number of degrees of freedom. Unlike the model proposed earlier [5], we consider the deforma- 
tion of the whole surface of a toms, which models the tyre shape, in all directions and we determine 
the shape of the deformed pneumatic tyre both in the contact area and on its free surface. (In the 
previous model [5], the deformation is reduced to the displacement of the load line along the wheel 
axis, while the force and moment are proportional to this displacement and its derivative with respect 
to the natural parameter at the point of contact.) 

1. A M O D E L  OF A W H E E L  WITH A P N E U M A T I C  TYRE 

We will assume that the wheel consists of a disc with an axis (1) (a solid), deformed by the side surface 
of the tyre (2) and an inextensible tread (3), along part of which contact occurs, without slipping, between 
the wheel and the plane OXtX2 (Fig. 1). The system of coordinates Cxtx2z3 is obtained from the inertial 
system OXrX2X3 by shifting the origin to the point C (the centre of mass of the undeformed wheel) 
and by rotation by an angle 13 around the CX3 axis. The Cx2 axis is the axis of rotation of the disc, while 
the plane CXlX 2 is the middle plane of the wheel and is orthogonal to the OXIX2 plane. Further, F2(0): 
Cxyz ~ Cxlx2x3 is the operator of rotation around the Cx 2 axis by an angle 0, while the system of 
coordinates Cxyz is rigidly connected to the disc of the wheel (Fig. 2). We will assume that the side 
surface of the tyre in the undeformed state coincides with part of the surface of the torus. One can 
change to a toroidal system of coordinates M~ITI2TI3 by means of the operator F20p)F3(w) (Fig. 2). We 
will represent the radius vector of a point on the side surface of the tyre in the deformed state in the 
system of coordinates OXtX2X 3 in the form 

R(~o,~,t)= E Xili + F3(~)F2(O + ~)  aex" +F3(~ lrql +bY. ui(~, ~l,t)lqi , 
i=l i=1 

¢pmod2n, I¥1~ < V0 (1.1) 

i:os0 0 sin° !11 
H-sin 0 0 cos0 0 
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Fig. 1. Fig. 2. 

Here li is the unit vector if the OXi axis, e,g is the unit vector of the Cx’ axis (Fig. 2), and Ui(Cp, v, t) 
is the projection of the displacement vector of a point on the tyre surface onto the axis with unit vector 
Q of the toroidal system of coordinates. 

We will formulate a number of hypotheses by means of which we can express the displacements of 
points on the tyre surface in terms of displacements of points of the tread. First, we will assume that 
the fibres of the tyre, corresponding to a constant value of the angle cp, are inextensible. Since the constant 
b is the radius of the circle obtained by a section of the torus with a plane passing through the C& axis, 
by (1.1) we obtain 

and further 

(I+u, +& /av)2 +cau, /&#--Q2 +@us /&& =1 (1.2) 

We will henceforth assume that the functions Ui and &+/a~ are small and we will represent (1.2), 
apart from second-order infinitesimals, in the form 

uI +au2fav=o (1.3) 
Second, we will assume that the tyre tread is also inextensible, i.e. 

and further 

Note that the values of the angle \v = 0 corresponds to points of the tread. Linearizing relation (1.4), 
we obtain 

ui.av/acp=O (1.5) 
The functions u, II and w define the displacements of points of the tread in the toroidal system of 

coordinates, coinciding in this case, when w = 0, with the cylindrical coordinates Cx’y’z’, when e,. = ql, 
ey. = ~2, e,. = rl3. 
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Third, we will assume the curvature of the fibres of the tyre, corresponding to constant angle tp, to be 
constant. This hypothesis is based on the fact that an inextensible filament, damped at the ends and acted 
upon by a constant distributed normal load (pressure), takes the form of a circle passing through the 
ends of the filament in the plane of action of the load. The fibre curvature k can be determined from 
the projections of the acceleration of a point on the axis of a Frenet trihedron, namely, I 02R/0V 2 1 = 
b2k. From (1.1) we obtain 

lq3X 1113 'Ill 4- £ Ui'i'li -I-'l~3X £ -~k2b2 
i=1 

2 2 2 2 1+=,+20,,2 :=~ (1.6) 

Retaining terms of the zeroth and first order of smallness in (1.6), and taking (1.3) into account, we obtain 

D4U2 / Dy 4 -I- D2u2 / Dy2 = 0 (1.7) 

We will obtain a solution of Eq. (1.7) which, by (1.4) and (1.5), satisfies the conditions 

U 2 (q), "l'yo, t )  = O, U 2 (tp, O, t) = W(q), t)r I b 

(1.8) 

c3u2(~,+yo, t ) lDy=O, Du2(c~ ,O, t ) lDy=-u(~ , t ) r lb  

The general solution of Eq. (1.7) has the form u2 = c l Y  + c2 + c3 cosy + c4 sin y, where ci are 
functions of ~ and t. Taking boundary conditions (1.8) into account we obtain 

u2 = u((p, O f ( Y ,  Vo)  + w(tp, t )g (y ,  Yo)  
(1.9) 

u i = - u ( q h t ) f ' ( y ,  y o ) -  w(tp, t )g ' (y ,  yo) ,  0 <~ y <~ 111o 

r 1 f (Y,  Y0) = ~"~[( - c ° s v 0 ) Y + A I  -AI c o s y +  A 2 siny] 

g(Y, Y0) = ~A [ -  sin Y0Y - A2 + (cos ~/0 - 1)cos V + sin Y0 sin y]  

A = Y 0 s i n Y 0 - 2 + 2 e o s ¥ 0 ,  A l=Y0cosY0-s inYo ,  A 2 = l - c o s v 0 - Y o s i n y  o 

In the range of values of y from -Y0 to zero, we need to replace Y0 by -Y0 in (1.9). Note that the 
function f(~/) is even while g(v) is odd. 

We expand the function u3(tp, y, t) in a Taylor series with respect to the variable y in the neighbourhood 
of the points y = Y0 and y = -Y0 and, confining ourselves in these expansions to the first two terms, 
we obtain 

u3 (~, V, t) = --v (tp, t)(1-1 yI IV0 )r / b (1.10) 

Hence, from the deformed state of the tread (the functions u, ~, w) we can determine the displace- 
ments of the points of the side surface of the tyre (formulae (1.9) and (1.10)). The shape of the deformed 
tyre is asymmetrical about the Cxrr 3 plane, while the derivatives Oui (tp, ¥, t)/O¥ may have discontinuities 
when ~/= 0. 

We will calculate the elementary work of the pressure in the tyre for possible displacements of points 
on its surface. We have 

~o2X 3 
~4 = S pnSRd•, 8R = b ~ 8ui'q i 

-VO 0 il l  

OR OR nda = [.-~. x.~-]dyd(p 
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and further, apart from terms of the second order of smallness inclusive 

GA = pb 3 ~o ~, Gul + cos Ill - + u I cos W - u2 sin wit + 
-¥o 0 c~ 

(1.11) 

In relations (1.11) we must replace uz and ~i by expressions (1.9) and (1.10) and integrate them over 

The integrand in (1.11) contains the term Gul(a/b + cos ~), linear in 8u 1. To retain the assumed 
approximation accuracy we must obtain u I to second-order infinitesimals inclusive, with respect to u, 

and w. From relations (1.2) and (1.6), assuming ui = uio + zi, where Uio are the functions (1.9) and 
(1.10) and zi are corrections, quadratic in u, a~ and w, we obtain, to second-order infinitesimals inclusive 
(the prime denotes a derivative with respect to ~)  

1 #2 ,2 1 , 
Z~'+ Zl = ~'U30 - u30 - ~ ' ( u m  - u20)2  ( 1 . 1 2 )  

The right-hand side of Eq. (1.12) is equal to -1/2[u(f"  + J0 + w(g" + g)]2 _ x)2r2(b~/o)-2, while the 
function zi vanishes when W = 0 and W = ---W0. The solution of Eq. (1.12) has the form 

Zt ((P, ~, t) = Alj (llt)u 2 + A33 (~')W 2 + 2A1:3 (¥)uw + A22 (lit) V 2 

where A ,  (i = 1, 2, 3) is an even function while A13 is a n o d d  function. The funetions A0. are specified 
in the range [-¥0, W0] and are linear combinations of W, ~lr ~, cos ¥,  sin W and are constant. No difficulties 
arise in determining these functions although it is a fairly long process. Substituting (1.9) and (1.10) 
into (1.11), replacing Gul by -f 'Su - g'Gw + 8Zl and integrating the expressions obtained, taking into 
account the evenness and oddness of the corresponding functions with respect to % we obtain an 
expression for the work done by the pressure in possible displacements in the form 

2x 
&4. = -- I [ rlo~U + nl uGu + n 2 ~  v + n3 wGw + nl2(U' Go - v  'Su)]d~0 (1.13) 

0 

It is a fairly lengthy process to calculate the coefficients nk (k = 0 , . . . ,  3) and n12 in explicit form. 

Note that no < 0, while the variation (1.13), taking (1.5) into account, can be represented in the form 

1 2n 
8A=-Gll[v,w], I'I = ~  ! [(n I +2nt2)u '2 +n2u 2 +n3wZld9 

where 1-I is the potential energy of the deformed tyre. When u = 9 = w = 0 the tyre is in stable equilibrium, and 
this means that the functional I1 has an isolated minimum and the coefficients nl + 2n12, n2, n3 are positive. 

The second note touches on the constancy of the pressurep. If we assume that the gas in the pneumatic tyre is 
a perfect gas, and the processes are isothermal, we havepV = poVo, wherep, Vandp0, V0 are the pressure and 
volume of the gas in the deformed and undeformed tyre, respectively. Then 

( / -- =P0 i -  + . . . .  V=Vo+AV 

¥o 2~ / ' a  
f f. u~l-+cosv)dva~+02 A V = b  3 (1.14) 

-Vo 0 ~, b 

where O2 are second-order and higher infinitesimals in u, u, w and their derivatives. Taking (1.5) and (1.9) and 
the oddness of the function g'(¥) into account, we arrive at the conclusion that the quantity AV in (1.14) is of the 
second and higher order of smallness in u, ~ and w and, consequently, the pressurep in (1.11) can be assumed 
constant, which corresponds to the assumed accuracy when calculating the work done by the pressure in possible 
displacements. 
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2. T H E  E Q U A T I O N S  O F  M O T I O N  O F  T H E  W H E E L  W I T H  T H E  T Y R E  

The kinetic energy of  the wheel is made up of the kinetic energy of  the disc 

1 3 
: Y. x? +±J A 2 

,~ i---J 2 2 

where ma is the mass of  the disc and Jxa, J~a are the moments of  inertia of the disc about the axes Cxs 
and Cx2, and the kinetic energy of the deformed tyre. As regards the latter we can assume that the whole 
mass of the tyre is concentrated in the tread (a uniform inextensible filament), and we can represent 
the kinetic energy of  the tread in the form 

r b = l p r l  R2({p,0,t)d~p, q>=0+q> 
2 0 

3 
R~(q>,0,t) = ~, ~(ili + rFs(~){I~ls×F~(O)[(I + u)~l~ + w~12 -m13]}+ 

i=l  

+rr3 (1~)1"2 (~)1~12 X[(1 + u)'q~ + wq 2 -o113 ] + / ~ l  + I~lf12 --t/1113 } 

where p is the density per unit length of  the tread. Further, we obtain 

3 
r2(-~)rs(-13)l~(q~,o,t)= E z:qi, zi =~il +r~i2 (2.1) 

i=l  

~,l = "~', c o s ~ c o s ~  + X2 cos ~s in l~ -  '~'3 s in~,  ~,2 = li - t ~ -  [~wcos tb 

~21 =- .~l  sin[ ~+ X2 c°s~, ~22 = ~k+~( l+u )cos~ - l~v  s in~  

~3J = )(J sin • cos 13 + 3(2 sin ~ sin 13 + ,~3 cos ~,  ~32 = --6 - 0(1 + u) - I~w sin 

and hence the kinetic energy of the wheel is 

m 3 

2 i=l  ,l, ,l~ 

2 ~  

+ ~  ! {r2[~22 + ( { 2 2 - ~ c o s ~ )  :z +({32 +t~)2} + 

+2r[{I 1{,2 + ({2t + r [~ cos ~)({22 - ~ cos O) + ({st - r 0)({s2 + 0)] }d~o (2.2) 

Here m, Jx and J2 are the mass of  the wheel and its moments of inertia in the undeformed state about  
the axes Cxs and Cx2. 

We will assume that the wheel rolls on the OXrX2 plane without slipping. This means that in the range 
[qh, tO2] of variation of the angle % the velocity of points on the tread is equal to zero. From (2.1)we obtain 

Z i = O, i = l, 2, 3, tp ¢ [91, tP2 ] (2.3) 

and the possible displacements satisfy the conditions 

6Z i=O, i=1,2,3,  9 ¢ [ 9 J , 9 2 ]  (2.4) 

Relations (2.3) can be replaced by the single holonomic relation R(q~, 0, t)l 3 = 0 and two non- 
holonomic relations, for example, Z2 = 0 and Z3 = 0. Moreover, at the boundary points of contact 
between the tread and the plane, corresponding to the angle q)l and ~ ,  we will introduce two constraint 
actions vl(t) and v2(t), which satisfy the conditions 

F 2 ( - ~ ) F  3 (-I$)lsv ~ = 0 =,  v Ik sin O~ - vs~ cos ~ = 0 (2.5) 

v~ =(Vlk,V2k,Vak), q~k =q~k+0; k = l , 2  

Conditions (2.5) denote that the constraint actions at the boundary points of the contact line are 
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equal to zero in the projection onto the OX3 axis. The work of these forces in possible displacements, 
after eliminating the constraints, is 

3 
8A t = ~ v~tSZtt, k = 1,2; 8Z/t = 8Zil~f~k (2.6) 

iffil 

When eliminating constraints (2.3) one must also take into account the work done by the constraint 
actions tt(cp, t), ¢PI ~< ¢P ~< ¢P2, defined in the form 

X Ix~ (~p, t)aZidq~ (2.7) 
qPl iffil 

We will assume that a force and a moment  are applied to the wheel disc (Fig. 1), the work of  which 
in possible displacements is 

~ F  = F(~)~XI + F (~  - ~ ]  2 )~X 2 - P~X  3 + M 2 ~ +  M 3 ~  (2.8)  

F(I~) = F1 cos I$ - F2 sin I$ 

The equations of motion of the wheel and the conditions where the functions undergo a jump at the 
boundary points of  the contact line are obtained from Hamilton's variational principle 

t~ (ST + 8A + 8A l + 8.42 + f.x4~ + 8A, + 8A 3)dr = 0 (2.9) 
t| 

2 x-ep I 
~¢0t3 ---- f 7~( qJ, t)[ ( l  + u +o ")(Su + Sv  ") + (u - u ' ) (8o  - 6 u ' )  + w'Sw']dcp 

92 

where Z(cp, t) is a Lagrange multiplier, corresponding to the condition for the tread to be inextensible 
(1.4), while the remaining quantities are given by (1.13) and (2.6)-(2.8). The integration domain [tx, t2] 
tJ [0, 2~] in (2.9) is split by the curves ¢p = q~x(t) and ¢p = ~ ( t )  into two parts, to each of  which Green's  
formula is applied. Hence we obtain the following system of equations 

d ~2 2 
- vxlr+J Y. kffil 

d q~2 7c 2 

dt 2 ¢PI 2 J t=l 

Sj (it i, O,[3) = IX1 cos ~ cos [~ - St 2 sin [~ + ~t 3 sin • cos 13 

~P2 2 
- " V x  T -  S S2(Ixi,~)dqu- Y. S 2 ( v / t , ~ t ) - P  = 0 (2.10) 

dt .~ ~ t=l 

$2 (~J'i, (~) = ~'~1 sin ~ - -  St 3 cos 

92 2 
VoT - V . . T -  r ~  S 3 (~t i, U,l~ ) d ~ p -  r ~ S3(vik, u k ,17 k)-t- M 2 = 0 

dt e ~ t=~ 

S3($ti,U,V ) = $tl~ + ~3(I + U) 
d ~p2 2 

V~T-  V ~ T - r ~  S40ti,~P,u,~,w)dcp-r ~ S~(vit,~P~,ut,ut,wt)+M3 = 0  
¢Pl k=i 

S~(tti,O,u,v ,w) = Ix~wcos~-  ~2((1 + u ) c o s ~ - ~  sinq~)+ $t3wsin • 

u t =u(q%,t), o~ =v(q~, t ) ,  w t =w(~o~,t), k - - 1 , 2  

V u r - d v , . , T - n o  - n l u + n ~  '+Z(1 + u + u  ')+[~,(u - u ' ) ] '  = 0, q~ e 12 

-no-ntu+n~2v" +lx~r=O, ¢p¢1~ 
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pr3(0k[,;]4 - ( - I )  TM ~L(v - u ' )  I/(k) + rv l4  = 0 

V ~ T - d v u . T - n ~ v  -nt2u" +k(v -u')-[)~(l+u+v')] '=O, q ~  
1 

12 

,'12!) + nl2u" + l lar  = O, ~ E I I 

pr3~04 [u" ]4 + (-1) 4+1 ~.(1 + u +v ')It(4) -v34 r = 0 

V w T - d v w T - n 3 w - ( ~ , w ' ) "  =O, {pEl 2 

n 3 w  = 1£2 r, 9 E 1 I 

p r 3 ~ k [ f f ] k  + (--1) 4+1 ~W'  It(k) +rV2k = 0 

k = 1,2; I l =]~01,92[, 12 =]q~2,2n-~01[ 

Here [f(~0, t)], = f(q~k + 0, t) --f(Cpk -- 0, t) is the jump of the function at the point q~k, while the subscripts 
/(1) and/(2) denote the limits of the corresponding functions as ~0 --¢ 91 from the left and ~0 ---> ~02 from 
the right. Relations (2.10), in addition to the equations of motion, contain the joining conditions (the 
conditions at the jump) on the boundaries of the contact area when ~0 ---> ~01 and 9 ~ ~ ;  together with 
the constraint equations (1.4) and (2.3) and conditions (2.5) they form a complete set of equations of 
the problem (20 relations in all) for the 20 unknowns: Xi, ~,  vii, vi2 (/ = 1, 2, 3), 13, 0, u, u, w, ~, 91, ~ -  
In addition, when determining the functions u, u and w one must take into account their continuity at 
the points ~01 and q~, namely, [u]k = [U]k = [W]k = 0 (k = 1, 2). 

3. R O L L I N G  OF THE W H E E L  W I T H  BREAKAWAY 

We will consider special cases of the above problem, namely, the rolling of a wheel with breakaway 
and motion on a banking. In these cases we can obtain an analytic solution of the problem and determine 
the forces and moments necessary for these situations to occur. 

Consider the rolling of a wheel with breakaway, when 

p = # = 0 ,  ) f l=ccose ,  X2=cs ine ,  X3=const, 0 = ~  
(u,v,w)(cp, t)=(U,V,W)(oO, a = ~ 0 + i 2 t - ~ / 2 ,  p.(q~,t)=p.(~x) 

~0k=-i2, vk=cons t ,  k=l,2,  ~.(~p,t)=~.(a) 

where e is the constant angle of breakaway. The equations of motion (2.10) for the functions u, u, and 
w in the contact area and the conditions for rolling without slipping (2.3) can be represented in the 
form (the primes denote a derivative with respect to a) 

gjr=no+niU-nj2V' ,  g2r=n3W, -g3r=n2V+nl2U" 
O{ E]Otl,Og2[, 0{ k =tpk +tat--n~2 (3.1) 
c cose s ina  = r f~(U'-  V), csin e = -rr~W' 

ccosecosa = rta(1 + U +  V') 

Assuming that the wheel centre moves along a straight line L = {X2 = Xltge, X3 = const} with constant 
velocity c, we will seek a solution of the last three equations of system (3.1), which define the contact 
area, taking into account the inextensibility of the tread (1.4) in the form of a section of a straight line 
parallel to L. As a result we obtain 

U = do~sina+d t sinfx + r-tX3 cosot-  1 

V = da cos a + d t c o s  (z  - r-IX3 sin 0t ( 3 . 2 )  

W = - d  tg ea + d 3, d = c c o s e ( r f l )  -1 

where di and d3 are arbitrary constants. The equations of the contact line in the system of coordinates 
OXvX2X3 have the form 

~! = ccosed - c cos ¢£~-1a - rd I (3.3) 

~2=csinet-csine.Q-la+rd3, 43=0;  ctE[at,a 2] 
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It follows from the condition for the tread to be inextensible, that when the angle ct changes, the arc 
of the tread rot coincides with the corresponding section of the contact area, which is possible when 
c = rfL The contact line, by (3.3), is a straight line parallel to the straight line L. Further, the reactions 
in the contact area ~q, Ix2, B3 are found from the first three equations of (3.1). 

The shape of the deformed tread outside the contact area can be found by solving Eqs (2.10) for the 
functions u, . and w, represented in the form 

go(l + U - U "  + 2V') -no -n lU +nj2V" + ~,(I +U + V')+ ~ , (V ' -U")+ ~ / (V -U ' )=O 
go(V - V" - 2U') - n2V-  nl2U" - ~'(1 + U + V') - k(U" + V") + X(V - U') = 0 (3.4) 

goW" +n3W + ~,'W" + LW"=O, U + V ' = 0 ;  go =pr3~2; (te[Ot2,2~-Otl]  

The last equation in (3.4) is the linearized condition for the tread to be inextensible (1.5). Assuming 
that the tension in the tread is -7~ = go - no - v(tx), where v(ct) is a small quantity, and only linear terms 
remain in (3.4), we obtain the general solution of the corresponding linear system in the form 

4 
V = ~ C k exp(D~ec), W = A t exp( '~ ) ,  

k=l 

h = l +  

+A2exp(-~x), U=-V ' ;  t xe [c t2 ,2x -cq ]  (3.5) 

n t / 2 + n l 2 ,  y=  - > 0  
no 

The form of the roots Dk depends on the geometrical characteristics of the tyre (the quantities a, b 
and ¥0). The coefficients Ck andAk are found from the conditions imposed on the jump in (2.10), and 
the conditions for the functions U, V and W to be continuous at the boundary points of the contact 
area/(1 and K2, namely 

go[U ' ]k  + ( -1 )  ~+t (no - go)(V- U')t(k ) = rvl~ , [U]~ = 0 

go[V']k -(-l)~+l(no -go +v)t(k) =-rv3k, [V]~ =0 (3.6) 

go[W']k -(-1)k+l(nO -go)Wt~k) = rv2~, [W] k = O; k = 1,2 

Using (3.2) and (3.5) we will represent the joining conditions (3.6) in the form 

4 
Y. D~'Wkj =amj, m=0,1,2 ,3  (3.7) 
k=l 

a o j = ( c o s ¢ - l ) c t j + d  I, a U =d 2 = l -  X3r -I 

a 2 ) = (I - cos tt)otj - d I - go cos eotj - ( - 1)J rvU 
no no 

a3j = l - ( l + n '  +n'2 ) d 2 - g °  c°st~+(-1)) J no no 

Wkl = C k exp[Dk (27t-or| )] = C k exp(27tD k ) 

wk2 = G expfO:t2) = G 

A,. exp{(-l) m+l y[21t(2 - s) + (-1) sot s l} = G.L~ 

G~,.= yd3+(- l )  rag°sine ~ y s i n e - ( - 1 )  m÷sr,yz" ; m,s=l ,2  
H 0 n0 .] 

The quantities Wk/are found from the system of linear algebraic equations (3.7) in the form 

[ ]-' 
W~= f i  ( D i - D  k) aOj k Iu3 a2jD*-a3)l [- D-'D 2~'2 +a,j(D~ +D~-D~)- 

i#k 

k = l  ..... 4, j = l , 2  (3.8) 
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Assuming  exp(Dk%) ~- 1 and e x p ( ± y a / )  ~- 1, f rom (3.7) and (3.8) we obta in  the re la t ions  

Wkl e x p ( - r d )  k ) = Wk2 e x p 0 r ~  k), k = I ..... 4 

Gjl e x p ( - y g )  = Gj2 exp(y~), j = 1,2 

f rom which we obta in  the equat ions  

__(_r (vii  _ v12 ) = [2dj - (I - cos e ) ( a  r + ix 2)](1 + H 3) (3.9) 
no 

-f-r (v31 + v32 ) = - [ 2 d  I - (1 - cos•)(tx I + oc 2)]H 4 
no 

( / - f f - r ( v31 -v32 )=2  2 g ° c ° s e  2 1+ n~ +hi2 + H ~  d ~ - ( 1 - c o s e ) H 6 ( ~ 2 - t x l )  
no no no 

r (v2j + v22) = "f th nT[sin e (a l  + a 2 )  - 2,/3 ] 
no 

_._r (v21 _ v22 ) = _ 2g 0 sin e _ Y sin e cth ~ ¥ ( a  2 - a I ) 
no no 

H I = DjD3GI3 IG31, H 2 = ( D ~  - D ~ ) t h r d 9  t th~J)  3 IG31 

H3 = DID3G3I / Gi3, I"14 = DID3(D~ -D12)thrd) l  th/tD3 I Gi3 

H s = (D 3 th rd), - D 3 th rd )3 ) /G3 , ,  H 6 = DID3(D ~ - D32)/G31 

Gi t=Di thg~Dt -Dt thxD3 ,  i ,k = 1,3 

In re la t ions (3.8) and (3.9) we have  s t ipulated that  Dz = - D r ,  and 0 4  = - 0 3 .  T h e  t e rms  in f i rs t -order  
infinitesimals remain ing  in the first five equat ions  of  (2.10) and in condi t ions (2.5) can be r ep re sen t ed  
in the fo rm 

F I = - v 3 j  - v 3 2  = r-lnoH4[2dl - ( 1  - c o s e ) ( t x  t +c t2)  ], M 2 = - r F  I 

F 2 = -v21 - v22 = r-lnoY th rcT[2d 3 - sin e(cq + ct 2 )] (3.10) 

P = - r - l n o ( a 2 - a l ) ,  M 3 =nosine(cc 2 - a  I) 

vii + vl2 + v31a t + v32a 2 = 0 =:~ 2H2d 2 + [H t - (i + H I )cose](a 2 - 

go cose],  vl -v12+v31al-v32a2 1 .),..., +a2)+ 

+ [2d I - ( 1  - c o s e ) ( a  I + a2)] ( I  + H3) = 0 

It  follows f rom re la t ions  (3.10) that  the condi t ions for  s teady rolling of  the whee l  with b reakaway  to 
exist are  the equations/142 = --rF1, M3 = -Prsine.  T h e  remain ing  characteris t ics  o f  the s teady  s tate  are  
found f rom (3.10) in the  fo rm 

( ol 
a ~ - a l = - n ~ l P r ,  o i l + a 2 = - 1  g° - - s~"  (l+H3)H21n~lF~r 

2d t = H~ l [I - (1 - cose ) ( l  

2d  3 = cth gq'n~ t F 2 r -  sin e(1 go cose  (1 + H 3)H21ngiFjr 
no 

(3.11) 
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Note that there is no resistance to the roiling of the wheel with breakaway. The latter manifests itself 
if dissipative forces related to the deformation of the tyre are introduced. 

4. T H E  R O L L I N G  OF A W H E E L  ON A B A N K I N G  

We will consider one other steady state of the rolling of the wheel on a banking, when 

X I = Rsintot, X 2 =-Rcos to t ,  X 3 = const 

[3 = tot, to = const, 0 = fL ~Ok = --f~ = const, k = 1,2 (4.1) 

(u,v,w)(tp, t)=(U,V,W)(ot),  ot = ( p + f ~ t - x / 2  

i~((p,t)=p.(ot), v~ =const, k = l , 2 ,  g(tp, t)=~.(ot) 

Here  R and Rto is the radius of the banking and the velocity of the wheel centre. The first three 
equations of  (3.1), in the case when the wheel roils on a banking, retain their form, while the last three 
equations are written in the form 

f~U' - ~V + toWsin ot = r-~Rtosin ot 

W" - to(l + U) sin ot - toV cos ot --- 0 (4.2) 

f~V' +~(1  + U) +toWcosot = r-lRtocosot 

Equations (4.2) allow of a first integral 

(1 + U)cosot - Vsin ot = X3r -I (4.3) 

while the condition for the tread to be inextensible (1.4) becomes 

The general solution of Eq. (4.4) has the form 

- - - - - c o s  o t + 8 ,  ot ~ [otl,ot2l (4.5) 
r to 

where 8 is an arbitrary constant. Further, we obtain from the second equation of  (4.2) and (4.3) 

U = -~sin("~ot+ 8) sinot+ X3 

V = f~ sinf toot + 8 ~ c o s o t - X 3  sin ot, ot E [ot,,ot 2 ] (4.6) 
to LE~ ] r 

We obtain the equations describing the contact area in the system of coordinates OXrX2X3 from (1.1) 
with ~ = 0 in the form 

~ , = r - - ~ s i n ( 1 3 - - ~ a - 8 ) ,  ~ 2 = - r ~ c o s ( 1 3 - ~ a - 8 ) ,  ~ 3 = 0  (4.7) 

It follows from relations (4.7) that the contact area is an arc of a circle with centre at the point O 
and radius rf~/to. Since the quantities U, 1I, W, al, a2 are small, we arrive at the conclusion that the 
quantities 81 = Ddto-R/r  and 8 are also small. Hence, in the contact area we obtain, apart from second- 
order infinitesimals 

U = -d2, V = r-I R~, W = - 8 1 ,  d2 = l - r-I X3 

U '=o t+SRIr ,  V ' = d  2, W ' = 8 + r o t / R  

The shape of the deformed tread and its tension are found from Eqs (3.4)-(3.6). Equations (3.7) 
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have the same form, only their right-hand sides must be taken as follows: 

aoj = S R I  r, a U = d  z 

azj = - R s - g °  o t j - ( -1 )  j rvlj 
r n o n o 

a 3 j = l - ~ o  -(l+nl+nl21d2+(-l)Jno rV3Jno 

a . ,  - , - ( - i ) "  
n o ~,R " 

The  solution o f  the equat ions  obta ined  is de te rmined  using the scheme descr ibed in Section 3. As  a 
result we obtain 

FI = R(D 2 + 1)(/)32 + 1) 

F2 =mR¢O2+21'gOr ~ ) th ~?t' + g ° / l  - g°r2 ~ ) ( ° ~ 2 " ~ 1  (~1 ) [R2T 2 - -  R ~ noR" T ")  

P =-r-lno(o~2 -oq ), d2 = -  )~ H~t (lx2 -oh ) 

R(DI 2 + 4 ) (D 2 + 4) 

4gorH45 
M3 = - R(DI 2 + | ) ( / ~  + 1)" ~l  + 0~2 -- - 2 0  + H 3)'~R8 r (4.8) 

The characteristics of the deformed tread ~ - cq, ¢Zl + or2, 5, 51, d2 and the moments M2 and M3 are 
found from (4.8) for arbitrary values of F1, F2 and P. We then find the relation between the angular 
velocities ~ and co using the equation f~ = ¢o(Rr -1 + 51). 

If we neglect dynamic effects in relations (3.11) and (4.8) between the forces, moments and quantities 
characterizing the deformation of the tread, by puttingg0 = 0, they agree with the corresponding relations 
obtained previously in [2, 3, 6]. 
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